
Falk-Jonatan Strube
Liebigstr. 30

01187 Dresden
B s74053@htw-dresden.de

Mrs B.Arch. B.Sc. Darlene Kilian
University of Applied Sciences Dresden
Office Z 718
Friedrich-List-Platz 1
01069 Dresden

June 17, 2016

Written Follow-Up Report

Dear Mrs Kilian:

This is my submission of the written follow-up report on my seminar "Object
oriented programming".

The report provides a conspectus of object oriented programming and its
uses. By covering the basics of generic as well as object oriented program-
ming, it gives an adequate foundation for understanding the concept of object
orientation.

The report will be advantageous for students who are studying computer sci-
ence or are going to work with computer scientists.

Sincerley,

Falk-Jonatan Strube

encl: Report on object oriented programming

ENGLISH C1 REPORT

Object oriented programming

submitted to

Mrs B.Arch. B.Sc. Darlene Kilian

Teacher English as a foreign language

University of Applied Sciences Dresden

June 17, 2016

by

Falk-Jonatan Strube

This report provides an overview over object oriented programming and in-
troduces the advantages of preparing and implementing an object oriented
program over generic programming.
The report is concluded by summarizing the benefits of object orientation.

Contents

Abstract 4

1 Introduction 5

2 Overview 6
2.1 Generic programming . 6
2.2 Object oriented programming . 7

3 Object oriented programming 9
3.1 Inheritance . 9
3.2 Polymorphism . 9

4 Conclusion 12

Bibliography 13

2

List of Figures

2.1 Pseudo-code of a generic program 6
2.2 UML basics . 7
2.3 UML visualization of an object oriented program 8

3.1 Expanded inheritance . 10
3.2 Deeper inheritance and polymorphism 11

3

Abstract

The process of programming an computer application does not start with the
first line of code. It starts by thinking of demands of the desired application and
how these demands should be implemented.

Object oriented programming (OOP) is an advanced way of structuring a com-
puter program before and during development. It therefore aids in the process of
finding and implementing good solutions for various demands of an application.

By modeling dependencies and correlations in classes with the Unified Mod-
eling Language (UML), a complex code formation can be made understandable.
In addition to helping the programmer with designing his application, it benefits
team communication and communication with a client. It also improves scala-
bility since the general overview allows specific changes in the model and the
program itself.

The key concepts of object oriented programming are inheritance and poly-
morphism. With inheritance, similar parts of a program may be reused in child-
and parent-objects. Polymorphism allows the modification of a inherited func-
tion. Both features add to comprehensibility and scalability.

Object oriented programming is used in almost every complex computer pro-
gram. From operating systems such as Windows or Linux to word processor ap-
plications such as Microsoft Word – object oriented programs are everywhere.
Though generic programming is more commonly known, since it is easier to
grasp at first, object oriented programming is more common overall.

4

1 Introduction

When a computer scientist starts working on a computer application, he has to
work out the following questions:

• What should the application be able to achieve?

• How should the application be structured to be able to achieve those
goals?

For most applications, the first step towards answering the second question is
object orientation. By creating an object oriented model, the computer scientists
has a solid base for implementing the desired features.

But what is object orientation? What is an object in the context of computer
programming?

"An object is a software bundle of related state and behavior." [2]

By thinking object oriented, the computer scientist can break a big problem
down into smaller ones by assigning different functions to different objects. By
doing this, the computer scientist does not only make the code more under-
standable, the application becomes more versatile, too. The proper separation
of functions and properties into different objects aids in making these objects
re-usable for similar problems.

The computer scientist who thinks and programs object oriented keeps him-
self open towards the growth of an application. Objects can be modified with
ease and by having a bigger picture in mind, the application can have potential
for more and is not crippled by a first model.

5

2 Overview

Object oriented programming stands in contrast to generic programming. While
object oriented programs are separated into objects, generic programs are es-
sentially one big object.

2.1 Generic programming

Generic programming is the easy way – at first. The programmer can write
whatever he wants without putting some thought into how the application should
work in the end. This freedom at the beginning of the development process
comes at the expense of the difficulties later on. Unstructured code becomes
more and more difficult to maintain and expand.

Imagine programming the behavior of the human being, more precisely the
eating behavior. One has to differentiate between different types of humans
at first. If one differentiates between age, there are some basic differences.
While the adult is more unrestricted in what or how he eats, a toddler is very
dependent on the parents and can not eat everything an adult can.

1 i f (adu l t) {
2 cook_something () ;
3 eat () ;
4 } e lse i f (s tudent) {
5 c a l l _ p i z z a _ s e r v i c e () ;
6 wai t () ;
7 eat () ;
8 } e lse i f (c h i l d) {
9 tel l_mom_youre_hungry () ;

10 wai t () ;
11 eat_on ly_desser t () ;
12 } e lse i f (baby) {
13 whi le (nothing_happens) {
14 cry () ;
15 }
16 be_breast fed () ;
17 }

Figure 2.1: Pseudo-code of a generic program

6

2.2 Object oriented programming ENGLISH C1 REPORT

Figure 2.1 shows a simplified pseudo-code snippet of a generic program. The
Code basically says "If you are an adult, cook something and eat. If you are a
student, call a pizza service, wait for the pizza to arrive and eat" and so on.
While some code is reused by reusing basic functions (such as eat()), most of
the code seems very redundant and complicated.

Above all, the code has limited scalabilty. Every additional age (i.e. an elderly)
would be inserted at the end of the different cases and contribute to clutter the
code. Additionally the program may run into problems when shared functions
(such as eat()) are changed. If the eat()-function would be expanded to chew
the food more (respecting the weak-jawed elderly), the whole code from figure
2.1 had to be rewritten. Since code often changes during development [4] this
is a major problem with generic programming.

2.2 Object oriented programming

Object oriented programming splits a problem into smaller pieces. These pieces,
called objects, are set into relation to each other. This braid of objects forms the
unit of meaning which is the application itself.

To visualize this braid, a unified modeling language (UML) is used [3]. It
basically displays an object (or the abstract version of an object, a class) in one
box as seen in figure 2.2. The box includes the properties and the functions of
the object. These boxes are connected with lines or arrows to symbolize their
relation.

Class name

properties

functions

Figure 2.2: UML basics

Using this UML visualization, one can start to display the example from 2.1,
seen in figure 2.3. This UML diagram shows, that the problem of how different
ages handle their eating habits is split between the objects. While every human
being has the property hunger and a way to satisfy its hunger, the objects adult
and student have additional properties. The student additionally has the func-
tion satisfy his hunger – the same as the human being. Although the student is

7

2.2 Object oriented programming ENGLISH C1 REPORT

Human

hunger

satisfy_hunger()

Adult

time_available

M

Student

motivation

satisfy_hunger()

Figure 2.3: UML visualization of an object oriented program

connected to the human being and thereby already has the function to satisfy
his hunger, he redefines it. That way, the student may include his motivation to
cook something into the function to satisfy his hunger as a parameter: If he has
motivation to cook something, he cooks. Else he may call a pizza service.

The connection between objects and the redefinition of functions of a con-
nected object are the two main advantages and key features of object orienta-
tion. They are called inheritance and polymorphism.

8

3 Object oriented programming

As indicated before, the main features of object orientation are inheritance and
polymorphism. The following sections are going to explain the concepts in more
detail.

3.1 Inheritance

The term inheritance describes how two objects are connected.
In the example from figure 2.3, the objects adult and student both inherit

their functions from their parent human being. That means, that every property
or function written in the parent object apply to its child objects as well. That
advantage is, that the human object may be expanded with functions such as
breathing() or drinking() which then apply to its children as well. The result is an
excellent scalability.

An other use case is, when the parent has to be expanded with more children.
By taking the example from figure 2.1, we can easily add the two child objects
child and baby. Both inherit the hunger property and the function to satisfy their
hunger, as seen in figure 3.1.

All children are guaranteed to have at least all properties and functions of
their parent. But they may redefine them to their own needs. This redefining is
called overwriting and is a key part of polymorphism.

3.2 Polymorphism

The word polymorphism consists of the word poly, meaning many, and morph,
meaning form. It describes when children have many different variations of their
parents function.

In the example from figure 3.1 student, child and baby have polymorphic func-
tions from their parent, the human being. The function of satisfying their hunger
has different forms: One may depend on motivation, the other on defiance. The

9

3.2 Polymorphism ENGLISH C1 REPORT

Human

hunger

satisfy_hunger()

Adult

time_available

Student

motivation

satisfy_hunger()

Child

defiance

satisfy_hunger()

bug_parents()

Baby

satisfy_hunger()

Figure 3.1: Expanded inheritance

baby may even have a totally new implementation of the function, as it is totally
different in its behavior.

Figure 3.2 shows both polymorphism and inheritance in the example of dif-
ferent groups at the university. The inheritance is applied through childrens
children. This illustrates the advantage of object oriented models: The com-
plexity may rise, but it is still possible to see the connections. A beginner is a
person as well as a student, in fact every object is a person.

With both inheritance and polymorphism these problems have been solved
through object orientation. With the aid of UML, an easy to understand diagram
can be designed and help to make the application future-proof.

10

3.2 Polymorphism ENGLISH C1 REPORT

Person

nameMMMM

eat()

work()

sleep()

Alumnus

visitUniversity()

drinkBeer()

Student

visitLecture()

drinkBeer()

Employee

salary

Professor

giveLecture()

Beginner

visitEverything()

Long-term student

salary

ignoreLecture()

Figure 3.2: Deeper inheritance and polymorphism

11

4 Conclusion

Object oriented programs are everywhere. No major program is written without
object orientation [5]. The report shows why this is: A program without object
orientation is more difficult to change and to expand – to develop all together.
As software becomes more and more complex throughout development, these
aspects become more and more important. When applications become more
complex, there are more possibilities for errors. With object orientation these
errors can be found and dealt with more easily.

But before a program can become more complex, it has to be coded at first.
And before this happens, it has to be designed. Object orientation and its visu-
alization model UML help in this progress unlike generic programming.

Nowadays software is a huge part of life. Almost every person carries a mo-
bile phone with him everywhere he goes. Most people use personal computers
almost every day. Software development is a huge part of the modern society
[1]. As a computer scientist it is imperative to learn object oriented programming
to be a good software developer.

Although object oriented programming itself may not be important for many
fields of study, the concept of object orientation – that is, splitting problems into
smaller ones and set them in relation to each other – can be abstractly used in
a lot of different ways.

Altogether, object orientation is a good concept for computer scientists and
people who interact with them.

12

Bibliography

[1] Birgit Demuth. Softwaretechnologie für Einsteiger. 2. geänd. Aufl. München:
Pearson, 2014. ISBN: 9781784340230.

[2] Oracle. Object-Oriented Programming Concepts. [Online; accessed 20-
April-2016]. URL: https://docs.oracle.com/javase/tutorial/java/
concepts/.

[3] James Rumbaugh, Ivar Jacobson, and Grady Booch. The unified modeling
language reference manual. 2. ed. Boston: Addison-Wesley, 2005. ISBN:
0321245628.

[4] Al Sweigart. “Why is Object-Oriented Programming Useful? (With a Role
Playing Game Example)”. In: The “Invent with Python” Blog (Dec. 2014).
[Online; accessed 20-April-2016]. URL: http://inventwithpython.com/
blog/2014/12/02/why-is-object-oriented-programming-useful-with-

an-role-playing-game-example/.

[5] Matt Weisfeld. “The Importance of Object-Oriented Programming in the Era
of Mobile Development”. In: informIT.com (Apr. 2013). [Online; accessed
20-April-2016]. URL: http://www.informit.com/articles/article.aspx?
p=2036576.

13

https://docs.oracle.com/javase/tutorial/java/concepts/
https://docs.oracle.com/javase/tutorial/java/concepts/
http://inventwithpython.com/blog/2014/12/02/why-is-object-oriented-programming-useful-with-an-role-playing-game-example/
http://inventwithpython.com/blog/2014/12/02/why-is-object-oriented-programming-useful-with-an-role-playing-game-example/
http://inventwithpython.com/blog/2014/12/02/why-is-object-oriented-programming-useful-with-an-role-playing-game-example/
http://www.informit.com/articles/article.aspx?p=2036576
http://www.informit.com/articles/article.aspx?p=2036576

	Abstract
	Introduction
	Overview
	Generic programming
	Object oriented programming

	Object oriented programming
	Inheritance
	Polymorphism

	Conclusion
	Bibliography

